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3088 H. Xiao

1. Introduction

In continuum physics, scalar-, vector- and second-order tensor-valued functions of
scalar-, vector- and second-order tensor† variables serve as mathematical models
of macroscopic physical behaviours of materials, such as elasticity, elastoplasticity,
viscoelasticity, creep, damage, photoelasticity, piezoelectricity, electromagnetic elas-
ticity, etc. Of them, the variables may be mass density, temperature, work-hardening
parameter, the gradient of temperature, electric and magnetic field vectors, strain
tensors, strain-rate tensors, and some internal variables characterizing internal states
of materials, etc., while the values may be energy, entropy, heat-flux vector, stress
tensors, stress-rate tensors, and rates of internal variables, etc. The principles of
material objectivity and material symmetry require that such tensor functions mod-
elling material behaviours, commonly known as material constitutive relations or
equations, obey a combined form-invariance restriction under the material symme-
try group. Specifically, let f(ui,Wσ,AL), h(ui,Wσ,AL) and F (ui,Wσ,AL) be,
respectively, scalar-, vector- and second-order tensor-valued functions of the a vec-
tor variables ui, the b skewsymmetric second-order tensor variables Wσ and the c
symmetric second-order tensor variables AL, where i = 1, . . . , a, σ = 1, . . . , b and
L = 1, . . . , c. Moreover, let g be a subgroup of the full orthogonal group Orth, which
may serve as a material symmetry group for solid materials. The tensor functions f ,
h and F are invariant (for f) or form-invariant (for h and F ) relative to or under
the group g, respectively, if

f(Qui,QWσQ
T,QALQ

T) = f(ui,Wσ,AL),

h(Qui,QWσQ
T,QALQ

T) = Qh(ui,Wσ,AL),

F (Qui,QWσQ
T,QALQ

T) = QF (ui,Wσ,AL)TQ,

for every Q ∈ g. General reduced forms of the tensor functions f , h and F under
the above invariance restrictions are called representations for f , h and F under the
group g. It has been known (see Pipkin & Wineman 1963; Wineman & Pipkin 1964;
Spencer 1971; Zheng & Boehler 1994) that finding representations for the tensor
functions f , h and F under a given group g is equivalent to determining functional
bases (for f) or generating sets (for h and F ) under the group g. Moreover, both
functional bases and generating sets to be used are further required to be irreducible
(see Spencer 1971; see also Xiao (1996a) and below) in order to arrive at compact
representations.

Subgroups of the full orthogonal group Orth include the five classes of cubic crystal
groups, the two classes of icosahedral groups, the five classes of transverse isotropy
groups, and their denumerably infinitely many classes of subgroups (see Vainshtein
1994; see also Zheng & Boehler 1994). Of them, the 32 classes of crystal groups,
the five classes of transverse isotropy groups and the full and proper orthogonal
groups Orth and Orth+ are related to commonly met solid materials (see, for exam-
ple, Truesdell & Noll 1965; Spencer 1971), while the others are associated with
quasi-crystalline solids and texture materials, etc. (see Vainshtein 1994). In the past
decades, many efforts have been made to find representations for various kinds of
tensor functions under the aforementioned orthogonal subgroups, and many impor-
tant results obtained. Here, I will not give the large number of related references. For

† Throughout, vector and tensor mean three-dimensional vector and tensor.
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further details, refer to Truesdell & Noll (1965), Spencer (1971), Eringen & Mau-
gin (1989), Kiral & Eringen (1990), Rychlewski (1991), Smith (1994) and the recent
reviews by Betten (1991), Rychlewski & Zhang (1991) and Zheng (1994), as well as
the references therein. Although many results in many cases, mainly in the sense of
polynomial representation, are now available, the general aspect of representation
problems for anisotropic functions, mainly in the sense of non-polynomial represen-
tation, remains open, except for some particular cases such as isotropic, orthotropic
and transversely isotropic functions, etc. (see, for example, Adkins 1958, 1960; Wang
1970; Smith 1971, 1982; Boehler 1977; Pennisi & Trovato 1987; Zheng 1993a; Jemio lo
& Telega 1997). Based upon the isotropic extension method for anisotropic functions,
initiated by Lokhin & Sedov (1963), Boehler (1979, 1987) and Liu (1982) (see also
Rychlewski 1991; Rychlewski & Zhang 1991; Zheng & Spencer 1993) and recently
developed by this author (see Xiao & Guo 1993; Xiao 1995a, 1996a), as well as
the recent results given in Xiao (1995b, 1996b–d, 1998a, 1999), we shall derive gen-
eral irreducible representations for scalar-, vector- and second-order tensor-valued
anisotropic functions relative to various kinds of orthogonal subgroups in a series of
works. In this paper, we shall investigate anisotropic functions relative to all kinds
of subgroups of the transverse isotropy group C∞h (see the related references listed
before and Smith & Rivlin (1958, 1964), Smith (1962, 1982), Spencer (1971), Smith
& Kiral (1969), Kiral & Smith (1974), Zheng (1993a), among others, for some par-
ticular results of this aspect; in particular, see Zheng (1993b) for the two-dimensional
counterpart).

In the remaining part of this introduction, I state some facts that will be used.
Throughout, V , Skw and Sym are used to represent the vector space, the skewsym-
metric and symmetric second-order tensor spaces, respectively. The notation u, v,
r, etc., W , H, etc., A, B, C, etc., is used to denote vectors, skewsymmetric second-
order tensors and symmetric second-order tensors, respectively. On the other hand,
g(X) is the symmetry group of the set X of vectors and tensors, and for any sub-
group g ⊂ Orth, M(g) the g-subspace of the space M ∈ {V,Skw,Sym}. The former
is composed of all orthogonal tensors preserving X, while the latter is formed by all
tensors each of which is invariant under the group g ⊂ Orth (see Xiao (1996b) for
details).

A finite set of scalar-valued functions that are invariant under group g ⊂ Orth,
{f1, . . . , fr}, is a functional basis under g if each scalar-valued function f that is
invariant under g is expressible as a single-valued function of the just-stated invari-
ants. On the other hand, a finite set of vector-valued (resp. second-order tensor-
valued) functions that are form-invariant under the group g ⊂ Orth, {ψ1, . . . ,ψs},
is a generating set under g if each vector-valued (resp. second-order tensor-valued)
function ψ is expressible as a linear combination of the just-stated set whose coef-
ficients are invariants under g. Furthermore, a functional basis (resp. a generating
set) under the group g ⊂ Orth is irreducible if none of its proper subsets is again
a functional basis (resp. a generating set) under the group g. According to Xiao
(1996b), a criterion for a generating set is as follows.

Criterion 1.1. The vector-valued or skewsymmetric tensor-valued or symmetric
tensor-valued functions, ψ1, . . . ,ψr, that are form-invariant under the group g ⊂
Orth form a generating set under g iff

rank{ψ1(ui,Wσ,AL), . . . ,ψr(ui,Wσ,AL)} > dimM(g ∩ g(ui,Wσ,AL)) (1.1)

Phil. Trans. R. Soc. Lond. A (1998)
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3090 H. Xiao

for all (ui,Wσ,AL) ≡ (u1, . . . ,ua;W1, . . . ,Wb;A1, . . . ,Ac) ∈ V a × Skwb×Symc,
where M = V , Skw, Sym, respectively, when ψi is vector-valued, skewsymmetric
tensor-valued and symmetric tensor-valued, respectively.

Throughout, the symbols rankS and dim S̃, where S and S̃ are a set of vectors
or tensors and a vector or tensor subspace, are used to designate the number of the
linearly independent elements in the set S and the dimension of the subspace S̃,
respectively.

To apply the above criterion, the following facts concerning the subgroups g ⊂ C∞h
will be useful:

dimV (g) =


3, g = C1,

2, g = C1h,

1, g ⊂ Orth+, g 6= C1,

0, otherwise;

(1.2)

dim Skw(g) =

{
3, g = C1, S2,

1, otherwise;
(1.3)

dim Sym(g) =


6, g = C1, S2,

4, g = C2, C1h, C2h,

2, otherwise.
(1.4)

On the other hand, a criterion for functional bases is as follows (see Pipkin &
Wineman 1963; Wineman & Pipkin 1964; see also Xiao 1996b).

Criterion 1.2. The invariants f1, . . . , fr under the group g ⊂ Orth form a func-
tional basis under g iff for X̄, X ∈ V a × Skwb×Symc,

f1(X̄) = f1(X), . . . , fr(X̄) = fr(X) =⇒ ∃Q ∈ g : X̄ = X. (1.5)

To check the irreducibility of a given functional basis, we shall use the following
fact.

Fact 1.3. A functional basis I under the group g ⊂ Orth is irreducible iff for any
given element f0 ∈ I there exist X,X ′ ∈ V a × Skwb×Symc, which belong to two
different g-orbits, such that

f0(X) 6= f0(X ′) and f(X) = f(X ′) for all f ∈ I/{f0}. (1.6)

In fact, for any given element f0, the proper subset I/{f0} cannot be a functional
basis under g if (1.6) holds, or else, according to the aforementioned criterion for
functional bases, X and X ′ must pertain to the same g-orbit (see (1.5)) and hence
f0(X) = f0(X ′), which contradicts (1.6)1.

In addition, by means of the Schoenflies symbol we record the transverse isotropy
groups C∞h and C∞, as well as all their finite subgroups as follows:

C∞h(n) = {±Rθ
n | θ ∈ R}, C∞(n) = C∞h(n) ∩Orth+,

C1 = {I}, S2 = {±I};
C1h(n) = {I,−Rπ

n}, C2(n) = {I,Rπ
n}, C2h(n) = {±I,±Rπ

n};
S4m+2(n) = {±R2kπ/2m+1

n | k = 1, . . . , 2m+ 1},
C2m+2h(n) = {±R2kπ/2m+2

n | k = 1, . . . , 2m+ 2},

Phil. Trans. R. Soc. Lond. A (1998)
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C2m+1(n) = S4m+2(n) ∩Orth+, C2m+2(n) = C2m+2h(n) ∩Orth+;

S4m(n) = {(−Rπ/2m
n )k | k = 1, . . . , 4m},

C2m+1h(n) = {(−Rπ/2m+1
n )k | k = 1, . . . , 4m+ 2}.

Here and hereafter, n is a given unit vector, I is the identity tensor and Orth+ is
the proper orthogonal group. Henceforth, we shall omit the defining vector n when
citing the above groups, if no confusion arises.

Finally, for u, v, r ∈ V and A ∈ Sym, we shall use the following notation:

ů = u− (u · n)n,

Å = A− (n ·An)n⊗ n− 1
2(trA− n ·An)(I − n⊗ n),

}
(1.7)

and, moreover,
u ∧ v = u⊗ v − v ⊗ u,
u ∨ v = u⊗ v + v ⊗ u,

}
(1.8)

[u,v, r] = u · (v × r) = r · (u× v) = v · (r × u). (1.9)

Here and henceforth, the symbols u ⊗ v and u × v are used to denote the tensor
product and the vector product of the vectors u and v.

2. A unified scheme of constructing functional bases
and generating sets

Usually, quite different methods are used to derive functional bases and generating
sets separately, which are generally cumbersome. Based upon some recent results by
this author (see the related references mentioned before), in this section we shall
describe a simple, unified scheme for constructing functional bases and generat-
ing sets. Such a scheme enables us to derive irreducible generating sets for general
vector-valued and second-order tensor-valued anisotropic functions only from those
for vector-valued and second-order tensor-valued isotropic functions with not more
than three variables (two variables for the anisotropic functions considered here) and,
especially, at the same time it enables us to obtain functional bases for scalar-valued
anisotropic functions directly by using generating sets obtained for vector-valued and
second-order tensor-valued functions.

First, we show how to construct irreducible generating sets for general vector-
valued and second-order tensor-valued anisotropic functions. According to the results
for isotropic extension of anisotropic functions given in Xiao (1995a, 1996a), we can
obtain complete generating sets for general vector-valued and second-order tensor-
valued anisotropic functions relative to any given anisotropy group g ⊂ Orth directly
by applying the well-known results for isotropic functions (see Wang 1970; Smith
1971; Boehler 1977; Pennisi & Trovato 1987). To this end, it suffices to investigate
anisotropic functions of not more than three variables (see Xiao 1996b). The results
obtained in such a direct manner, however, need not be irreducible. To arrive at
irreducible representations, further consideration is needed. For the sake of definite-
ness and simplicity, in what follows we shall discuss only the anisotropic functions
of interest in this paper. The generalization is direct.

Let g be any subgroup of C∞h. Henceforth, we denote the domain

V a × Skwb×Symc

Phil. Trans. R. Soc. Lond. A (1998)
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by D. For any given set of vectors and second-order tensors,

X = (u1, . . . ,ua;W1, . . . ,Wb;A1, . . . ,Ac) ∈ D,
it has been proved (see Xiao 1999) that there are X0 ⊂ X, where X0 is a subset of
X with not more than two elements, such that

g ∩ g(X) = g ∩ g(X0). (2.1)

Accordingly, an irreducible generating set for general anisotropic functions of the
variables X relative to the group g ⊂ C∞h can be formed by union of irreducible
generating sets for the same type of anisotropic functions of not more than two
variables (see Xiao 1999), and hence the problem of determining the former is reduced
to that of determining the latter. We shall construct irreducible generating sets for
the aforementioned lists of variables, X0, by means of the following procedures.

1. Construct irreducible generating sets G(u), G(W ) and G(A) for a vector vari-
able u, a skewsymmetric tensor variable W and a symmetric tensor variable
A, respectively.

2. For each list X0 = (x,y) of two variables, where x is a vector variable and y is
a vector or a second-order tensor variable, form the union G(x) ∪ G(y). This
union obeys the criterion (1.1) for the cases

g(z) ∩ g = g(X0) ∩ g, z ∈ {x,y}.
Thus, it suffices to treat the case other than the above cases, which is specified
by the conditions

g(z) ∩ g 6= g(X0) ∩ g, z = x,y. (2.2)

Then, analyse the latter case and judge whether or not the aforementioned
union also obeys the criterion (1.1) for the latter case. If no, then add some
generators with two variables x and y into this union so that an irreducible
generating set for the two variables X0 = (x,y) is formed. If yes, then the
aforementioned union is already the desired result.

We would point out that the conditions (2.2) usually result in such an X0 = (x,y)
that both the construction of the foregoing generators with two variables x and y
and the determination of a functional basis of X0 (see below) can be considerably
simplified (e.g. see Cases 4–6 in § 4 a).

Next, we show how to obtain a functional basis directly by using the generating
sets for vector-valued and second-order tensor-valued functions derived in fulfilling
the aforementioned procedures. Our method is mainly based upon the following fact.

Fact 2.1. Let X ∈ D be a set of vectors and second-order tensors with a subset
X0 satisfying (2.1). Moreover, let

V (X0) = {h1(X0), . . . ,hr(X0)},
Skw(X0) = {Ω1(X0), . . . ,Ωs(X0)},
Sym(X0) = {Ψ1(X0), . . . ,Ψt(X0)},

be generating sets for vector-, skewsymmetric and symmetric tensor-valued aniso-
tropic functions of the set of variables, X0, relative to the group g, respectively. Then
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any vector r ∈ X/X0, any skewsymmetric tensor H ∈ X/X0 and any symmetric
tensor C ∈ X/X0 can be determined by the following three sets of invariants:

{h1(X0) · r, . . . ,hr(X0) · r},
{trΩ1(X0)H, . . . , trΩs(X0)H},
{trΨ1(X0)C, . . . , trΨt(X0)C}.

The proof is as follows. From (2.1) we deduce

g(X0) ∩ g ⊂ g(z), z ∈ X.
By virtue of this and the obvious fact,

g1 ⊂ g2 =⇒M(g2) ⊂M(g1),

for any two subgroups g1, g2 ⊂ Orth and M ⊂ {V,Skw,Sym}, we infer

r ∈ V (g(r)) ⊂ V (g ∩ g(X0)) = spanV (X0),
H ∈ Skw(g(H)) ⊂ Skw(g ∩ g(X0)) = span Skw(X0),
C ∈ Sym(g(C)) ⊂ Sym(g ∩ g(X0)) = span Sym(X0),

for any vector r ∈ X/X0, any skewsymmetric tensor H ∈ X/X0 and any symmetric
tensor C ∈ X/X0, where the last equality in each of the above three expressions
can be derived from (2.13), (2.16) and (2.15) in Xiao (1996b). Here spanS is used
to denote the subspace spanned by a set S of vectors or tensors. Thus, we deduce
that the three sets given before, each of which is formed by the invariants obtained
by forming the corresponding inner product between each z ∈ {r,H,C} and each
generator for X0, can completely determine r, H and C. This indicates that the fact
mentioned before is true.

Further, let I(X0) be a functional basis of the subset X0 ⊂ X obeying (2.1)
relative to the group g. Then, the general set X of variables can be determined up
to an orthogonal tensor pertaining to the group g by the basis I(X0), as well as
all invariants given by the inner products in the aforementioned three sets when
r,H,A runs over the set X/X0. This fact is a direct corollary of the fact proved
above and the fact (see (1.5)) that the subset X0 is determined up to an orthogonal
tensor pertaining to the group g by the functional basis I(X0). Thus, applying the
just-stated fact and the fact that a set I(X) of invariants under the group g is
a functional basis under the group g iff any X ∈ D can be determined up to an
orthogonal tensor belonging to g by I(X) (see (1.5)), by means of generating sets
for vector-valued and second-order tensor-valued functions derived in fulfilling the
aforementioned procedures we can obtain functional bases for scalar-valued functions
directly from the inner product between each vector generator and a generic vector,
the inner product between each tensor generator and a generic tensor, as well as
functional bases for X0. The main procedures are as follows.

1. In accordance with Step 1 stated above, construct invariants by forming the
inner product between generic variable z ∈ X and each given generator, and
moreover, construct an irreducible functional basis for one variable.

2. In accordance with Step 2 stated above, construct invariants by forming the
inner product between either a generic vector or tensor variable z ∈ X and
each given generator, and moreover, construct an irreducible functional basis
for X0 specified by (2.2).
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After fulfilling the above procedure for all X0 obeying (2.1), the results obtained
together provide a complete functional basis. However, the irreducibility of such a
basis remains to be proved. In the succeeding sections, we shall construct irreducible
representations for scalar-, vector-, and second-order tensor-valued anisotropic func-
tions of any finite number of vector and second-order tensor variables relative to
all kinds of subgroups of the transverse isotropy group C∞h by applying the above
unified scheme.

3. The triclinic and monoclinic crystal classes C1, S2 and C1h

(a) The triclinic group C1

Henceforth, (e1,e2,e3) is an orthonormal basis of V . Trivially,

V e1,e2,e3,

Skw e1 ∧ e2,e2 ∧ e3,e3 ∧ e1,

Sym e1 ⊗ e1,e2 ⊗ e2,e3 ⊗ e3,e1 ∨ e2,e2 ∨ e3,e3 ∨ e1,

R r · ei;ei ·Hej ;ei ·Cej ; i, j = 1, 2, 3,

where r = u1, . . . ,ua, ;H = W1, . . . ,Wb and C = A1, . . . ,Ac, provide irreducible
representations for scalar-, vector-, skewsymmetric and symmetric tensor-valued an-
isotropic functions of the variables X ∈ D relative to the triclinic group C1.

(b) The triclinic group S2

It is evident that for any X ∈ D there is a vector u ∈ {u1, . . . ,ua} ⊂ X such that

g(X) ∩ S2 = g(u) ∩ S2.

Accordingly, we construct the following table.

V u,u× e1,u× e2,u× e3,

Skw e1 ∧ e2,e2 ∧ e3,e3 ∧ e1,

Sym e1 ⊗ e1,e2 ⊗ e2,e3 ⊗ e3,e1 ∨ e2,e2 ∨ e3,e3 ∨ e1,

R u · v, [u,v,ei];ei ·Hej ;ei ·Cej ; 〈(u · ei)(u · ej)〉; i, j = 1, 2, 3.

Here and hereafter, the invariants placed in the angle brackets supply an irreducible
functional basis for one or two variables under consideration. The other invariants are
obtained by forming the corresponding inner product between each generator given
and a generic variable x ∈ X. Thus, we obtain the main result of this subsection as
follows.

Theorem 3.1. The table given above, together with

u,v = u1, . . . ,ua, u 6= v; W = W1, . . . ,Wb; A = A1, . . . ,Ac,

provide irreducible representations for scalar-, vector-, skewsymmetric and symmetric
tensor-valued anisotropic functions of the variables X ∈ D under the triclinic group
S2.

Remarks. An irreducible functional basis of two vector variables under S2 was
derived by Liu (1982), in which 18 invariants are used. Here only 16 invariants are
used.
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(c) The monoclinic crystal class C1h

Since C1h has only two subgroups, i.e. C1 and itself, we infer that for any X ∈ D
there exists a single vector or second-order tensor x ∈ X such that

g(X) ∩ C1h(n) = g(x) ∩ C1h(n).

Consequently, it suffices to consider representations concerning one variable. Hence-
forth, e1 and e2 are two orthonormal vectors in the n-plane and

N = e1 ∧ e2, (3.1)

where N is invariant under C∞h(n) and independent of choice of the orthonormal
vectors e1 and e2 in the n-plane.

Case 1. ∃u ∈ X : g(X) ∩ C1h(n) = g(u) ∩ C1h(n).

V e1,e2, (u · n)n,
Skw N , (u · n)n ∧ e1, (u · n)n ∧ e2,

Sym n⊗ n,e1 ⊗ e1,e2 ⊗ e2,e1 ∨ e2, (u · n)n ∨ e1, (u · n)n ∨ e2,

R r · e1, r · e2, (r · n)(u · n),
trHN , (u · n)(n ·He1), (u · n)(n ·He2),
n ·Cn,e1 ·Ce1,e2 ·Ce2,e1 ·Ce2, (u · n)(n ·Ce1), (u · n)(n ·Ce2),

〈u · e1,u · e2, (u · n)2〉.

Case 2. ∃W ∈ X : g(X) ∩ C1h(n) = g(W ) ∩ C1h(n).

V e1,e2, (n ·We1)n, (n ·We2)n,
Skw N ,n ∧Wn,n ∧ (n×Wn),
Sym n⊗ n,e1 ⊗ e1,e2 ⊗ e2,e1 ∨ e2,n ∨Wn,n ∨ (n×Wn),
R r · e1, r · e2, (r · n)(n ·We1), (r · n)(n ·We2),

trHN ,n ·WHn, [n,Wn,Hn],
n ·Cn,e1 ·Ce1,e2 ·Ce2,e1 ·Ce2,n ·WCn, [n,Wn,Cn],

〈e1 ·We2, (n ·We1)2, (n ·We2)2, (n ·We1)(n ·We2)〉.
It can readily be verified that the first three sets given above are irreducible gener-

ating sets for vector-valued, skewsymmetric and symmetric tensor-valued anisotropic
functions of the skewsymmetric tensor variable W ∈ Skw relative to C1h(n), respec-
tively, by means of (1.2)–(1.4) and the fact

g(W ) ∩ C1h(n) =

{
C1h(n), Wn = 0,
C1, Wn 6= 0.

Moreover, it can be proved easily that the four invariants of W listed in the angle
brackets form an irreducible functional basis of the variable W ∈ Skw under C1h(n).

Case 3. ∃A ∈ X : g(X) ∩ C1h(n) = g(A) ∩ C1h.

V e1,e2, (n ·Ae1)n, (n ·Ae2)n,
Skw N ,n ∧An,n ∧ (n×An),
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Sym n⊗ n,e1 ⊗ e1,e2 ⊗ e2,e1 ∨ e2,n ∨An,n ∨ (n×An),
R r · e1, r · e2, (r · n)(n ·Ae1), (r · n)(n ·Ae2),

trHN ,n ·HAn, [n,An,Hn],
n ·Cn,e1 ·Ce1,e2 ·Ce2,e1 ·Ce2,n ·ACn, [n,An,Cn],
〈n ·An,e1 ·Ae1,e2 ·Ae2,e1 ·Ae2,

(n ·Ae1)2, (n ·Ae2)2, (n ·Ae1)(n ·Ae2)〉.
By means of the criterion (1.1) and the equalities (1.2)–(1.4) and the fact

g(A) ∩ C1h(n) =

{
C1h(n), n×An = 0,
C1, n×An 6= 0,

it can readily be checked that the first three sets given above are irreducible generat-
ing sets for vector-valued, skewsymmetric and symmetric tensor-valued anisotropic
functions of the symmetric tensor variable A ∈ Sym relative to C1h(n), respectively.
Moreover, the irreducible functional basis of the symmetric tensor variable A ∈ Sym
under C1h(n), listed in the angle brackets, is cited from Xiao (1996c).

Combining the above cases, we arrive at the main result of this subsection as
follows.

Theorem 3.2. The four sets given by

u · e1,u · e2, (u · n)2;e1 ·We2, (n ·We1)2, (n ·We2)2, (n ·We1)(n ·We2);

n ·An,e1 ·Ae1,e2 ·Ae2,e1 ·Ae2, (n ·Ae1)2, (n ·Ae2)2, (n ·Ae1)(n ·Ae2);
(u · n)(v · n); (u · n)(n ·We1), (u · n)(n ·We2);

n ·WHn, [n,Wn,Hn];n ·ABn, [n,An,Bn];n ·AWn, [n,Wn,An];

and
e1,e2, (u · n)n; (n ·We1)n, (n ·We2)n; (n ·Ae1)n, (n ·Ae2)n;

and

e1 ∧ e2, (u ·n)n∧ e1, (u ·n)n∧ e2;n∧Wn,n∧ (n×Wn);n∧An,n∧ (n×An);

and

e1 ⊗ e1,e2 ⊗ e2,n⊗ n,e1 ∨ e2, (u · n)n ∨ e1, (u · n)n ∨ e2;
n ∨Wn,n ∨ (n×Wn);n ∨An,n ∨ (n×An);

where u,v = u1, . . . ,ua; W ,H = W1, . . . ,Wb; A,B = A1, . . . ,Ac; u 6= v, W 6=
H, A 6= B, provide irreducible representations for scalar-, vector-, skewsymmetric
and symmetric tensor-valued anisotropic functions of the variables X ∈ D under the
monoclinic group C1h(n), respectively.

4. The classes C2mh and C2m

The classes C2mh and C2m include the monoclinic crystal classes C2h and C2, the
tetrahedral crystal classes C4h and C4, the hexagonal crystal classes C6h and C6, as
well as the transverse isotropy groups C∞h and C∞, as the particular cases when
m = 1, 2, 3,∞.
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(a) The classes C2mh

According to lemma 2.5 in Xiao (1999), for any X ∈ D there exists X0 ⊂ X such
that

g(X) ∩ C2mh(n) = g(X0) ∩ C2mh(n),

where X0 ∈ {(u,v), (u,W ), (u,A)}. Thus, following the scheme outlined in § 2, six
cases are discussed as follows.

Case 1. ∃u ∈ X : g(X) ∩ C2mh(n) = g(u) ∩ C2mh(n).

From the criterion (1.1) and the formulae (1.2)–(1.4), as well as

g(u) ∩ C2mh(n) =


C2mh(n), u = 0,
C2m(n), u = an 6= 0,
C1h(n), u · n = 0, u 6= 0,
C1, (u · n)u× n 6= 0,

(4.1)

g(u) ∩ C∞h(n) =


C∞h(n), u = 0,
C∞(n), u = an 6= 0,
C1h(n), u · n = 0, u 6= 0,
C1, (u · n)u× n 6= 0,

(4.2)

we deduce that the following fact holds: generating sets for vector-valued (for m > 1),
skewsymmetric tensor-valued (for m > 1) and symmetric tensor-valued (for m > 2)
anisotropic functions of the vector variable u under C2mh(n) can be derived from
those for vector-, skewsymmetric and symmetric tensor-valued isotropic functions
of the extended variables (u,N), respectively. Moreover, with the aid of the fact
that (−I)u = −u, −I ∈ C2mh(n) and the invariance condition stated at the start
of the introduction, it may readily be understood that functional bases for scalar-
valued anisotropic functions of the vector variable u under C2mh(n) can be obtained
from those for scalar-valued anisotropic functions of the symmetric tensor variable
u ⊗ u ∈ Sym under C2mh(n). The latter can be found in Xiao (1996d) for m = 1
and in Case 3 below for m > 2.

Taking the above facts into account, we construct the following table:

V ů, ů× n, (u · n)n,
Skw N , (u · n)ů ∧ n, (u · n)ů ∧ (ů× n),
Sym n⊗ n; δ1me1 ⊗ e1, δ1me2 ⊗ e2, δ1me1 ⊗ e2; (1− δ1m)I,

(1− δ1m)ů⊗ ů, (1− δ1m)ů ∨ (ů× n); (u · n)ů ∨ n, (u · n)n ∨ (ů× n),
R ů · r̊, [n, ů, r̊], (u · n)(r · n),

trHN , (u · n)ů ·Hn, (u · n)[n, ů,Hn],
n ·Cn; δ1me1 ·Ce1, δ1me2 ·Ce2, δ1me1 ·Ce2; (1− δ1m) trC,
(1− δ1m)ů ·Ců, (1− δ1m)[n, ů,Ců]; (u · n)ů ·Cn, (u · n)[n,Cn, ů],

〈(u · n)2; δ1m(u · e1)2, δ1m(u · e2)2, δ1m(u · e1)(u · e2);

(1− δ1m)αm(ů), (1− δ1m)α′m(ů)〉.
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Here and henceforth,

αm(ů) =
m∑
r=1

(ů · lr)2m, lr = R4rπ/4m
n e,

α′m(ů) =
m∑
r=1

(ů · l′r)2m, l′r = R(4r+1)π/4m
n e,

 (4.3)

for m = 2, 3, . . . . Here and henceforth, e is used to denote a given unit vector in the
n-plane.

Henceforth, the first three sets consisting of vector generators, skewsymmetric ten-
sor generators and symmetric tensor generators are represented by V 0(u), Skw0(u)
and Sym0

m(u), respectively, and the set of invariants given in the angle brackets is
signified by I0

m(u).
It should be pointed out that in the above table each element with the coefficient

δ1m or (1−δ1m) comes into play only when m = 1 or m > 2. Throughout, δrs is used
to denote the Kronecker delta. Such a difference between C2h and C2mh for m > 2,
which will also appear in the next four cases, arises from the fact

dim Sym(C2mh) =

{
dim Sym(C2h) = 4, m = 1,
dim Sym(C2mh) = 2, m > 2.

Case 2. ∃W ∈ X : g(X) ∩ C2mh(n) = g(W ) ∩ C2mh(n).

Every vector-valued function of the variableW ∈ Skw that is form-invariant under
C2mh vanishes.

From the criterion (1.1) and the equalities (1.3)–(1.4), as well as

g(W ) ∩ C2mh(n) =

{
C2mh(n), Wn = 0,
S2, Wn 6= 0,

(4.4)

g(W ) ∩ g(N) =

{
C∞h(n), Wn = 0,
S2, Wn 6= 0,

(4.5)

we infer that the following fact holds: generating sets for skewsymmetric tensor-
valued (for m > 1) and symmetric tensor-valued (for m > 2) anisotropic functions of
the variable W ∈ Skw under C2mh(n) can be derived from those for skewsymmetric
and symmetric tensor-valued isotropic functions of the extended variables (W ,N).
Thus, we construct the following table:

Skw N ,n ∧Wn,n ∧ (n×Wn),
Sym n⊗ n; δ1me1 ⊗ e1, δ1me2 ⊗ e2, δ1me1 ∨ e2; (1− δ1m)I,

(1− δ1m)Wn⊗Wn, (1− δ1m)Wn⊗ (n×Wn);
n ∨Wn,n ∨ (n×Wn),

R trHN ,n ·WHn, [n,Wn,Hn],
n ·Cn, δ1me1 ·Ce1, δ1me2 ·Ce2, δ1me1 ·Ce2;
(1− δ1m)n ·WCWn, (1− δ1m)[n,Wn,WCn];n ·WCn, [n,Wn,Cn],

〈trWN ; δ1m(n ·We1)2, δ1m(n ·We2)2, δ1m(n ·We1)(n ·We2);

(1− δ1m)αm(Wn), (1− δ1m)α′m(Wn)〉.
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Henceforth, the two generating sets in the above table are denoted by Skw0(W )
and Sym0

m(W ), and the functional basis given in the angle brackets is designated by
I0
m(W ).

We need only to show that the set I0
m(W ) is an irreducible functional basis of W

under C2mh(n). To this end, we prove that I0
m(W ) obeys the criterion (1.5). The

proof for m = 1 is easy. Let m > 2. Observing the fact that the last two invariants
in the above table form a functional basis of the vector Wn in the n-plane (see
Case 1), we infer that for W̄ ,W ∈ Skw,

I0
m(W̄ ) = I0

m(W ) =⇒ ∃Q ∈ C2mh(n) : W̄n = Q(Wn), tr W̄N = trWN .

In the above, we can assume Q ∈ C2m(n), since Wn lies in the n-plane. Thus, by
means of the identity

W = 1
2(trWN)N + (Wn) ∧ n, (4.6)

as well as the facts: QNQT = N , Qn = n for each Q ∈ C2m(n), we deduce

I0
m(W̄ ) = I0

m(W ) =⇒ ∃Q ∈ C2m(n) : W̄ = QWQT.

Thus, we conclude that I0
m(W ) obeys the criterion (1.5). The irreducibility of this

basis is evident.

Case 3. ∃A ∈ X : g(X) ∩ C2mh(n) = g(A) ∩ C2mh(n).

Every vector-valued function of the symmetric tensor variable A ∈ Sym that is
form-invariant under C2mh(n) vanishes.

From the facts

g(A) ∩ C2mh(n) =


C2mh(n), Å = O,

C2h(n), n×An = 0, Å 6= O,

S2, n×An 6= 0,
(4.7)

g(A) ∩ g(N) =


C∞h(n), Å = O,

C2h(n), n×An = 0, Å 6= O,

S2, n×An 6= 0,
(4.8)

and the criterion (1.1), as well as the equalities (1.3)–(1.4), we infer that the fol-
lowing fact holds: generating sets for skewsymmetric tensor-valued (for m > 1) and
symmetric tensor-valued (for m > 2) anisotropic functions of the variable A ∈ Skw
under C2mh(n) can be derived from those for skewsymmetric and symmetric tensor-
valued isotropic functions of the extended variables (W ,N). Thus, we construct the
following table:

Skw N ,n ∧An,n ∧ (n×An),
Sym n⊗ n; δ1me1 ⊗ e1, δ1me2 ⊗ e2, δ1me1 ∨ e2; (1− δ1m)I,

(1− δ1m)Ån⊗ Ån, (1− δ1m)Ån ∨ (n× Ån);A,AN −NA,
R trHN ,n ·HAn, [n,An,Hn],

n ·Cn, trAC, trACN ; δ1me1 ·Ce1, δ1me2 ·Ce2, δ1me1 ·Ce2;
(1− δ1m) trC, (1− δ1m)n · ÅCÅn, (1− δ1m)[n, Ån,CÅn]

〈n ·An, [n,An,A2n]; δ1me1 ·Ae1, δ1me2 ·Ae2, δ1me1 ·Ae2,
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δ1m(n ·Ae1)2, δ1m(n ·Ae2)2, δ1m(n ·Ae1)(n ·Ae2); (1− δ1m) trA,

(1− δ1m) trA3, (1− δ1m)αm(Ån), (1− δ1m)α′m(Ån),

(1− δ1m)βm(Å), (1− δ1m)β′m(Å)〉.
In the above, the invariants α′m(Ån) and α′(Ån) are obtained by replacing ů with

Ån in (4.3), and moreover,

βm(Å) =
m∑
r=1

(lr · Ålr)m, β′m(Å) =
m∑
r=1

(l′r · Ål′r)m, (4.9)

where the unit vectors lr and l′r lie in the n-plane and are given in (4.3).
It can easily be shown that the presented generating set for skewsymmetric tensor-

valued functions, denoted by Skw0(A) henceforth, obeys the criterion (1.1). It is evi-
dent that this set is irreducible. Moreover, the presented generating set for symmetric
tensor-valued functions, denoted by Sym0

m(A) henceforth, is an equivalent form of
the minimal generating set given in Xiao (1996d).

In the following, we prove that the set given in the angle brackets in the above
table, denoted by I0

m(A), provides an irreducible functional basis for scalar-valued
anisotropic functions of the variable A ∈ Sym under C2mh(n). The proof for I0

1 (A)
is already available (see Xiao 1996d). Thus we only need to consider the set I0

m(A)
for m > 2.

Let e1 ≡ e and e2 be two orthonormal vectors in the n-plane, the former defining
the vectors lr and l′r in (4.3). Denoting e3 ≡ n and

x = 1
2(A11 −A22), y = A12,

q(A) = xe1 + ye2,

Aij = ei ·Aej , i, j = 1, 2, 3,

 (4.10)

for any unit vector l in the n-plane we have

l ·Al = 1
2(A11 +A22) + x cos 2γ + y sin 2γ, (4.11)

where γ is the angle between l and e (=e1). In particular, when l = lr, l
′
r (cf. (4.3)),

the above identity yields

lr · Ålr = x cos
2rπ
m

+ y sin
2rπ
m

= |q(A)| cos
(

2rπ
m
− θ1

)
,

l′r · Ål′r = x cos 2
(
rπ

m
+

π

4m

)
+ y sin 2

(
rπ

m
+

π

4m

)
= |q(A)| cos

(
2rπ
m

+
π

2m
− θ1

)
,

where θ1 is the angle between the vectors q(A) and e. Hence, we have

βm(Å) = |q(A)|m
m∑
r=1

cosm
(

2rπ
m
− θ1

)
= am|q(A)|m(bm + cosmθ1), (4.12)

β′m(Å) = |q(A)|m
m∑
r=1

cosm
(

2rπ
m

+
π

2m
− θ1

)
= am|q(A)|m(bm + sinmθ1). (4.13)

On the other hand, we have

αm(Ån) = |Ån|2m
m∑
r=1

cos2m
(
rπ

m
− θ2

)
= cm|Ån|2m(dm + cos 2mθ2), (4.14)
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α′m(Ån) = |Ån|2m
m∑
r=1

cos2m
(
rπ

m
+

π

4m
− θ2

)
= cm|Ån|2m(dm + sin 2mθ2),

(4.15)

where θ2 is the angle between the vectors Ån and e. In the above four expressions,
am, . . . , dm are four constants with amcm 6= 0.

From (4.12)–(4.15), we know that the last four invariants listed in the table of
this subsection can determine the invariants |Ån|2 and |q(A)|2. Therefore, the four
invariants given by (4.12)–(4.15), together with the two invariants A33 = n ·An and
trA, can determine the two invariants

n ·A2n = A2
33 + |Ån|2, trA2 = 1

2(trA−A33)2 +A2
33 + 2(|Ån|2 + |q(A)|2).

Applying this fact and the fact that the set

I∞(A) = {n ·An, trA, trA2,n ·A2n, trA3, [n,An,A2n]}
is a functional basis of the variable A ∈ Sym under the transverse isotropy group
C∞h (see Xiao 1996d, pp. 26–27), we infer

I0
m(Ā) = I0

m(A) =⇒ I∞(Ā) = I∞(A) =⇒ ∃Q = Rψ
n ∈ C∞h(n) : Ā = QAQT.

Moreover, if Å 6= O, i.e.
|Ån|2 + |q(A)|2 6= 0,

then utilizing the result just derived and the expressions (4.12)–(4.15), as well as the
formulae (1.14)1–(1.15)1 in Xiao (1998a), we further deduce that either

I0
m(Ā) = I0

m(A) =⇒
{
αm( ˚̄An) = αm(Ån),
α′m( ˚̄An) = α′m(Ån),

=⇒
{

cos 2m(θ2 + ψ) = cos 2mθ2,

sin 2m(θ2 + ψ) = sin 2mθ2,
=⇒ 2mψ = 2kπ,

or {
βm( ˚̄A) = βm(Å),
β′m( ˚̄A) = β′m(Å),

=⇒
{

cosm(θ1 + 2ψ) = cosmθ1,

sinm(θ1 + 2ψ) = sinmθ1,
=⇒ 2mψ = 2kπ,

holds, i.e. Q ∈ C2mh(n). Hence, we know that the set I0
m(A) for m > 2 obeys the

criterion (1.5) if
Å 6= O.

In addition, it is evident that the set I0
m(A) also obeys (1.5) if Å = O. Thus, we

conclude that the set I0
m(A) is a functional basis of the variable A ∈ Sym under

C2mh(n). The irreducibility of this basis can be inferred by the following eight pairs
X = A and X = A′ meeting the condition (1.6).

trA :
A = e1 ⊗ e1 + e2 ⊗ e2 − 2n ∨ e2,A

′ = −e1 ⊗ e1 − e2 ⊗ e2 + 2n ∨ e2;
trA3:
A = e1 ∨ e2 + n⊗ e1 + n ∨ e2,A

′ = −e1 ∨ e2 + n⊗ e1 + n ∨ e2;
n ·An :
A = e1 ⊗ e1 − n⊗ n,A′ = −e1 ⊗ e1 + n⊗ n;
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[n,An,A2n] :
A = e1⊗e1−e2⊗e2 +n∨e1 +n∨e2,A

′ = −e1⊗e1 +e2⊗e2 +n∨e1 +n∨e2;

αm(Ån) :
A = n ∨ e1,A

′ = n ∨ (Qe1),Q = R
π/2m
n ;

α′m(A) :
A = n ∨ (Qe1),A′ = −n ∨ (Qe1),Q = R

π/4m
n ;

βm(Å) :
A = e1 ⊗ e1 − e2 ⊗ e2,A

′ = Q(e1 ⊗ e1 − e2 ⊗ e2)QT,Q = R
π/m
n ;

β′m(Å) :
A = Q(e1 ⊗ e1 − e2 ⊗ e2)QT,A′ = −Q(e1 ⊗ e1 − e2 ⊗ e2)QT,Q = R

π/2m
n .

Case 4. ∃u,v ∈ X : g(X)∩C2mh(n) = g(u,v)∩C2mh(n) 6= g(x)∩C2mh(n),x =
u,v.

It is evident that

g(x) ∩ C2mh(n) 6= C1, x = u,v.

Hence, from (4.1) we infer

(x · n)x× n = 0, x = u,v.

From the latter and the conditions given at the outset, we obtain

u · n = 0,v × n = 0 or v · n = 0,u× n = 0 (4.16)

with |u| · |v| 6= 0 and
g(u,v) ∩ C2mh(n) = C1.

Accordingly, we construct the following table (the first case in (4.16) is considered):

V ů, ů× n, (v · n)n,
Skw N ,u ∧ v, (u× n) ∧ v + (v × n) ∧ u,
Sym n⊗ n; δ1me1 ⊗ e1, δ1me2 ⊗ e2, δ1me1 ∨ e2; (1− δ1m)I,

(1− δ1m)ů⊗ ů, (1− δ1m)ů ∨ (ů× n);u ∨ v, (u× n) ∨ v + (v × n) ∨ u,
R ů · r̊, (v · n)(r · n), [n, ů, r̊],

trHN ,u ·Hv, [n,u,Hv] + [n,v,Hu],
n ·Cn; δ1me1 ·Ce1, δ1me2 ·Ce2, δ1me1 ·Ce2; (1− δ1m) trC,
(1− δ1m)ů ·Ců, (1− δ1m)[n, ů,Ců];u ·Cv, [n,u,Cv] + [n,v,Cu]

〈(v · n)2; δ1m(u · e1)2, δ1m(u · e2)2, δ1m(u · e1)(u · e2);

(1− δ1m)αm(ů), (1− δ1m)α′m(ů)〉.
By virtue of (4.16), the above table for irreducible representations can easily be

constructed.

Case 5. ∃(u,W ) ∈ X : g(X)∩C2mh(n) = g(u,W )∩C2mh(n) 6= g(x)∩C2mh(n),
x = u,W .

It is evident that
g(u) ∩ C2mh(n) 6= C1, u 6= 0,

g(W ) ∩ C2mh(n) 6= C2mh(n).

}
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Then, from (4.1) and (4.4) we derive

(u · n)u× n = 0, u 6= 0,
g(W ) ∩ C2mh(n) = S2, i.e. Wn 6= 0,

}
(4.17)

with
g(u,W ) ∩ C2mh(n) = C1.

For the case at issue, owing to (4.17)2, irreducible generating sets for skewsymmet-
ric and symmetric tensor-valued functions of the variables (u,W ) under C2mh(n) are
provided by those for skewsymmetric and symmetric tensor-valued functions of W
under C2mh(n), listed by the table in Case 2. Therefore, it suffices to consider scalar-
and vector-valued functions and the relevant invariants only. The other invariants
can be found in the table for Case 2.

V ů, (u · n)n, ů× n,Wu,W (u× n) + n×Wu,

R ů · r̊, (u · n)(r · n), [n, ů, r̊], r ·Wu, [n,u,Wr] + [n, r,Wu]

〈I0
m(u), I0

m(W ), (1− δ1m)(u ·Wn)2, (1− δ1m)(u ·Wn)[u,Wn,n]〉.
We are in a position to prove that the above two sets, denoted by V (u,W ) and

I(u,W ), are an irreducible generating set and a functional basis for the variables
(u,W ) specified by (4.17) relative to C2mh(n), respectively. For the case when u×
n = 0, the proof is easy. In the following, we consider the case when u · n = 0. We
prove that the two sets in question obey the criteria (1.1) and (1.5), respectively.
First, we have

rankV (u,W ) =

{
rank{u,u× n,Wu} = 3, n ·Wu 6= 0,
rank{u,u× n,W (u× n)} = 3, n ·Wu = 0,

where in the second step, we have

n ·W (u× n) = (Wn) · (u× n) 6= 0,

which holds for the following facts: (1) the vectors u,u × n and Wn lie in the n-
plane and the first two are independent, and (2) n ·Wu = (Wn) · u = 0. Then,
from the above and (1.2) we know that the set V (u,W ) obeys the criterion (1.1) for
the case u · n = 0.

Hence, the set V (u,W ) is a generating set required. Let u = n and W = n ∧
(e1 + e2), which meet (4.17). Then, we have ů = ů × n = 0, and hence we deduce
that each of the three generators (u · n)n, Wu and W (u × n) + n ×Wu cannot
be removed from the set V (u,W ). On the other hand, let u = e1 and W = n∧ e2.
Then, we have: (u · n)n = Wu = 0, and hence we infer that either of the two
generators ů and ů×n cannot be removed from the set V (u,W ). From these facts,
we conclude that the generating set V (u,W ) is irreducible.

Next, for m = 1, it is readily verified that the set I(u,W ) obeys the criterion
(1.5). For m > 2, let I ′(u,W ) = I0

m(u) ∪ I0
m(W ). Then, for the pair (ū, W̄ ) and

(u,W ), where the two vectors lie in the n-plane, we have

I ′(ū, W̄ ) = I ′(u,W ) =⇒ ∃R,Q ∈ C2mh(n) : ū = Ru, W̄ = QWQT.

In the above, the following fact is used: I0
m(u) and I0

m(W ) are, respectively, func-
tional bases of u and W under C2mh(n). Denoting Q0 = QTR = ±Rψ

n, we infer

(ū · W̄n)2 = ((Q0u) ·Wn)2 = |u|2|Wn|2 cos2(θ + δψ), δ2 = 1,
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(˚̄u · W̄n)[˚̄u, W̄n,n] = ((Q0u) ·Wn)[Q0u,Wn,n]

= |u|2|Wn|2 cos(θ + δψ) sin(θ + δψ),

where θ is the angle between u(= ů) and Wn and (θ+ δψ) the angle between Rψ
nu

and Wn. Thus, we deduce{
(ū · W̄n)2 = (u ·Wn)2,

(ū · W̄n)[ū, W̄n,n] = (u ·Wn)[u,Wn,n],
=⇒

{
cos 2(θ + δψ) = cos 2θ,
sin 2(θ + δψ) = sin 2θ,

Therefore, ψ = kπ, i.e.

R = QQ0 = εQRkπ
n , ε2 = 1.

Let R0 = (−1)kεQ ∈ C2mh(n). Then, using the fact

u · n = 0 =⇒ Rkπ
n u = (−1)ku,

we infer

R0u = (−1)kεQu = εQRkπ
n u = Ru = ū,

R0WRT
0 = QWQT = W̄ .

Thus, we conclude that the set I(u,W ) obeys the criterion (1.5) for the case at
issue, and hence it is a functional basis required.

Case 6. ∃(u,A) ∈ X : g(X) ∩ C2mh(n) = g(u,A) ∩ C2mh(n) 6= g(x) ∩ C2mh(n),
x = u,A.

From the above conditions we derive (cf. Case 5)

(u · n)u× n = 0, u 6= 0,
g(A) ∩ C2mh(n) = S2, i.e. n×An 6= 0,

}
(4.18)

with
g(u,A) ∩ C2mh(n) = C1.

For the case at issue, owing to (4.18)2, irreducible generating sets for skewsymmet-
ric and symmetric tensor-valued functions of the variables (u,A) under C2mh(n) are
provided by those for skewsymmetric and symmetric tensor-valued functions of A
under C2mh(n), listed by the table in Case 3. Therefore, it suffices to consider scalar-
and vector-valued functions and the relevant invariants only. The other invariants
can be found in the table for Case 3:

V ů, (u · n)n, ů× n,Au,A(u× n) + n×Au,
R ů · r̊, (u · n)(r · n), [n, ů, r̊], r ·Au, [n,u,Ar] + [n, r,Au]

〈I0
m(u), I0

m(A), (1− δ1m)(u ·An)2, (1− δ1m)(u ·An)[u,An,n]〉.
It is easy to treat the case when u×n = 0. Let u ·n = 0. Following the same pro-

cedure used in the last case, one can prove the facts: (1) the set of vector generators
given is an irreducible generating set for vector-valued anisotropic functions of the
variables (u,A) specified by (4.18) relative to C2mh(n), and (2) the set of invariants
given in the angle brackets is a functional basis of the variables (u,A) specified by
(4.18) relative to C2mh(n).

Finally, combining the above cases and applying theorem 2.4 in Xiao (1999), we
arrive at the main result of this subsection as follows.
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Theorem 4.1. The four sets given by
I0
m(u); I0

m(W ); I0
m(A); (u · n)(v · n), ů · v̊, [n, ů, v̊];

(u · n)ů ·Wn, (u · n)[n,Wn, ů], (1− δ1m)(ů ·Wn)2,

(1− δ1m)(ů ·Wn)[u,Wn,n];

(u · n)ů ·An, (u · n)[n,An, ů], (1− δ1m)(ů ·An)2, (1− δ1m)(ů ·An)[u,An,n],
(1− δ1m)ů ·Aů, (1− δ1m)[n, ů,Aů];n ·WHn, [n,Wn,Hn];
n ·WAn, [n,Wn,An], (1− δ1m)n ·WAWn, (1− δ1m)[n,Wn,AWn];

trAB, trABN , (1− δ1m)n · ÅBÅn, (1− δ1m)[n, Ån,BÅn];
u ·Wv, [n,u,Wv] + [n,v,Wu];u ·Av, [n,u,Av] + [n,v,Au];

and
ů, ů× n, (u · n)n;Wu,W (u× n) + n×Wu;Au,A(u× n) + n×Au;

and
Skw0(u); Skw0(W ); Skw0(A);u ∧ v, (u× n) ∧ v + (v × n) ∧ u;

and
Sym0

m(u); Sym0
m(W ); Sym0

m(A);u ∨ v, (u× n) ∨ v + (v × n) ∨ u;
where u,v = u1, . . . ,ua; W ,H = W1, . . . ,Wb; A,B = A1, . . . ,Ac; u 6= v, W 6=
H, provide irreducible representations for scalar-, vector-, skewsymmetric and sym-
metric tensor-valued anisotropic functions of the variables X ∈ D under the group
C2mh(n) for each integer m > 1, respectively.

(b) The classes C2m

Let
I0(H1, . . . ,Ha;W1, . . . ,Wb;A1, . . . ,Ac),

Skw0(H1, . . . ,Ha;W1, . . . ,Wb;A1, . . . ,Ac),

Sym0(H1, . . . ,Ha;W1, . . . ,Wb;A1, . . . ,Ac)
be, respectively, an irreducible functional basis and irreducible generating sets for
scalar-valued, skewsymmetric and symmetric tensor-valued anisotropic functions of
(a + b) skewsymmetric tensor variables and c symmetric tensor variables under a
centrosymmetrical orthogonal subgroup g containing the central inversion −I. Then,
according to theorems 2.1–2.2 in Xiao (1996a), the four sets,

I0(Eu1, . . . ,Eua;W1, . . . ,Wb;A1, . . . ,Ac),

E : Skw0(Eu1, . . . ,Eua;W1, . . . ,Wb;A1, . . . ,Ac),

Skw0(Eu1, . . . ,Eua;W1, . . . ,Wb;A1, . . . ,Ac),

Sym0(Eu1, . . . ,Eua;W1, . . . ,Wb;A1, . . . ,Ac),
supply, respectively, an irreducible functional basis and irreducible generating sets for
scalar-, vector-, skewsymmetric and symmetric tensor-valued anisotropic functions of
a vector variables, b skewsymmetric tensor variables and c symmetric tensor variables
under the rotation subgroup of g, i.e. g ∩ Orth+. Here, the second set above is ob-
tained by forming the double dot product between each generator (skewsymmetric
tensor-valued) and the third-order Levi-Civita or Eddington tensor E. From this fact
and theorem 4.1, we derive the following result.
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Theorem 4.2. The four sets given by

I0
m(Eu); I0

m(W ); I0
m(A); ů · v̊, [n, ů, v̊]; [n,u,Wn],u ·Wn;

[n,u,An],u ·An, (1− δ1m)u ·Au, (1− δ1m)[n,u,Au];n ·WHn, [n,Wn,Hn];
n ·WAn, [n,Wn,An], (1− δ1m)n ·WAWn, (1− δ1m)[n,Wn,AWn];
trAB, trABN , (1− δ1m)n · ÅBÅn, (1− δ1m)[n, Ån,BÅn];

and
n, ů, ů× n;Wn,n×Wn;An,n×An;

and
Skw0(Eu); Skw0

m(W ); Skw0
m(A);

and
Sym0

m(Eu); Sym0
m(W ); Sym0

m(A);

where u,v = u1, . . . ,ua; W ,H = W1, . . . ,Wb; A,B = A1, . . . ,Ac; u 6= v, W 6=
H, provide irreducible representations for scalar-, vector-, skewsymmetric and sym-
metric tensor-valued anisotropic functions of the variables X ∈ D under the group
C2m(n) for each integer m > 1, respectively.

5. The classes S4m

The classes S4m include the improper tetrahedral crystal class S4 as the particular
case when m = 1.

According to lemma 2.5 in Xiao (1999), for any given X ∈ D there exists a subset
X0 ⊂ X such that (2.1) with g = S4m(n) holds, where

X0 ∈ {(u,v), (u,W ), (u,A)}.
Moreover, by using

g(u) ∩ S4m(n) =


S4m(n), u = 0,
C2m(n), r × n = 0, r · n 6= 0,
C1, r × n 6= 0,

(5.1)

g(W ) ∩ S4m(n) =

{
S4m(n), Wn = 0,
C1, Wn 6= 0,

(5.2)

g(A) ∩ S4m(n) =


S4m(n), A = xI + yn⊗ n,
C2(n), n×An = 0, Å 6= O,

C1, n×An 6= 0,
(5.3)

we further infer that for any given X ∈ D, there exists a single vector or second-order
tensor x ∈ X such that

g(X) ∩ S4m(n) = g(x) ∩ S4m(n).

Accordingly, it suffices to discuss the three cases for a single variable.

Case 1. ∃u ∈ X : g(X) ∩ S4m(n) = g(u) ∩ S4m(n).

According to the related result in Xiao (1995a, 1996a), representations for scalar-,
vector-, and second-order tensor-valued anisotropic functions of the vector variable
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u under S4m(n) may be obtained from those for scalar-, vector-, and second-order
tensor-valued isotropic functions of the extended variables (u,φm(u),N), respec-
tively, where

φm(u) = n ∨ ρm(ů) + δ1m(u · n)(e1 ⊗ e1 − e2 ⊗ e2), (5.4)

where

ρm(ů) =
2m∑
r=1

(−1)r(ů · lr)2m−1lr, (5.5)

where the 2m unit vectors lr are obtained by the replacement of m with 2m in (4.3)2.
We would mention that the second term at the right-hand side of (5.4) comes into
play only when the group S4(n) is concerned. This fact implies a particular property
of the group S4(n), which will be pointed out later.

Applying the above fact and the related results for isotropic functions and removing
some redundant elements, we construct the following table:

V u, ů× n, (ů · ρm(ů))n, [n, ů,ρm(ů)],
Skw N ,n ∧ ρm(ů),n ∧ (ρm(ů)× n),
Sym I,n⊗ n, ů⊗ ů, ů ∨ (ů× n),φm(u),φm(u)N −Nφm(u),
R u · r, [n, ů, r̊], (ů · ρm(ů))(r · n), [n, ů,ρm(ů)](r · n);

trHN ,n ·Hρm(ů), [n,Wn,ρm(ů)];
trC,n ·Cn, ů ·Ců, [n, ů,Ců], trφm(u)C, trφm(u)CN

〈(u · n)2, (u · n)u · ρm(ů), (u · n)[n, ů,ρm(ů)], α2m(ů), α′2m(ů)〉.
In the above, the last two invariants are obtained by replacing m with 2m in (4.3).
In the following, we proceed to prove that the first three sets given in the above

table, denoted by V 1
m(u), Skw1

m(u) and Sym1
m(u) henceforth, are irreducible gener-

ating sets for vector-valued and skewsymmetric and symmetric tensor-valued aniso-
tropic functions of the vector variable u under S4m(n), respectively. To this end, we
prove that each of these sets obeys the criterion (1.1). In fact, with help from the
relevant trigonometric identity, we have

u · ρm(ů) =
2m∑
r=1

(−1)r(ů · lr)2m

= |ů|2m
2m∑
r=1

(−1)k cos2m
(
kπ

2m
− θ
)

= a′m|ů|2m cos 2mθ, (5.6)

[n,u,ρm(ů)] = a′m|ů|2m sin 2mθ, (5.7)

and (cf. (4.14)–(4.15))

α2m(ů) = c′m|ů|4m(d′m + cos 4mθ), α′2m(ů) = c′m|ů|4m(d′m + sin 4mθ), (5.8)

where θ is the angle between ů and e, and a′m, c′m and d′m are three constants with
a′mc

′
m 6= 0.

From the first two equalities above we infer

u · ρm(ů) = [n, ů,ρm(ů)] = 0⇐⇒ ů = 0. (5.9)
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Then, by using (5.1) and the latter, as well as (1.2)–(1.3), we deduce that V 1
m(u) and

Skw1
m(u) obey (1.1), respectively. For the set Sym1

m(u), the group S4(n) and the
groups S4m(n) for m > 2 should be treated separately due to the following particular
property of the former:

dim Sym(g(u) ∩ S4(n)) =


dim Sym(S4(n)) = 2, u = 0,
dim Sym(C2(n)) = 4, ů = 0, u · n 6= 0,
dim Sym(C1) = 6, u× n 6= 0,

(5.10)

while for each m > 2,

dim Sym(g(u) ∩ S4m(n)) =

{
2, u× n = 0,
6, u× n 6= 0.

(5.11)

For the set Sym1
m(u), with m = 1 and ρ = ρ1(ů) we have

rank Sym1
1(u) =


rank{I,n⊗ n} = 2, u = 0,
{I,n⊗ n,e1 ⊗ e1 − e2 ⊗ e2,e1 ∨ e2} = 4, ů = 0,

u 6= 0,
{I,n⊗ n, ů⊗ ů, ů⊗ (ů× n),n ∨ ρ,n ∨ (n× ρ)} = 6, ů 6= 0,

and for m > 2, we have

rank Sym1
m(u) =

{
rank{I,n⊗ n} = 2, ů = 0,
6, ů 6= 0.

Thus, we infer that the set Sym1
m(u) obeys (1.1) for each integer m > 1.

It is evident that both Skw1
m(u) and Sym1

m(u) are irreducible. Moreover, from the
facts (cf. (5.6)–(5.7))

[n, ů,ρm(u)] = 0 for u = e; u · ρm(u) = 0 for u = Rπ/4m
n e,

and g(u) ∩ S4m(n) = C1 for either of the two vectors given above, we deduce that
V 1
m(u) is irreducible.
Next, we prove that the set given in the angle brackets in the foregoing table,

denoted by I1
m(u) henceforth, is an irreducible functional basis of the vector variable

u under S4m(n). To this end, we prove that this set obeys (1.5). It is easy to treat
the case when ů = 0. Now suppose (u ·n)ů 6= 0. Then by using (5.6)–(5.8) we infer

I1
m(ū) = I1

m(u) =⇒
{
|˚̄u| = |ů|, ū · n = δu · n,
cos 2mθ̄ = δ cos 2mθ, sin 2mθ̄ = δ sin 2mθ,

=⇒
{
|˚̄u| = |ů|, ū = δu · n,
θ̄ = θ + (4p+ 1− δ)/4m, p = 0,±1, . . . ,

=⇒ ∃Q ∈ S4m(n) : ū = Qu.

In the above, δ2 = 1; θ̄ and θ are the angles between ū and e and between u and e,
respectively; and Q ∈ S4m(n) depends on δ, given by

Q =

{
R

2pπ/2m
n , δ = 1,
−R(2m+2p+1)π/2m

n , δ = −1.
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Suppose u · n = 0 and ů = u 6= 0. Then, by using (5.8) we deduce

I1
m(ū) = I1

m(u) =⇒ |ū| = |u|, cos 4mθ̄ = cos 4mθ, sin 4mθ̄ = sin 4mθ

=⇒ |ū| = |u|, θ̄ = θ +
kπ

2m
, k = 0,±1,±2, . . .

=⇒ ∃Q ∈ S4m(n) : ū = Qu,

where Q ∈ S4m(n) depends on the integer k, given by

Q =

{
R
kπ/2m
n if k is even,
−R(k+2m)π/2m

n if k is odd.

From the above, we conclude that the set I1
m(u) obeys (1.5), and therefore that it is

a functional basis of the vector u under S4m(n). Moreover, from the following pairs
(X = u, X ′ = u′), fulfilling the condition (1.6), we infer that the just-mentioned
functional basis is irreducible:

(u · n)2 :
u = n, u′ = 2n;
(u · n)u · ρm(u) :
u = n+ e, u′ = −n+ e;
(u · n)[n, ů,ρm(u)] :
u = n+Rπ/4m

n , u′ = −n+Rπ/4m
n ;

α2m(ů) :
u = e, u′ = R

π/4m
n e;

α′2m(ů) :
u = R

π/8m
n e, u′ = −Rπ/8m

n e.

Case 2. ∀r ∈ X : r × n = 0&∃W ∈ X : g(X) ∩ S4m(n) = g(W ) ∩ S4m(n).

Every scalar-valued (resp. second-order tensor-valued) anisotropic function of W
under S4m(n) is equivalent to a scalar-valued (resp. second-order tensor-valued)
anisotropic function of W under C4mh(n). Irreducible representations for the latter
can be obtained merely replacing m with 2m in the table for Case 2 of § 4 a. In
the following, we only need to consider the vector-valued function and the related
invariants.

Representations for vector-valued anisotropic functions of the skewsymmetric ten-
sor variable W under S4m(n) can be derived from those for isotropic functions of
the extended variables (W ,ρm(Wn),N) (see Xiao 1995a, 1996a), where ρm(Wn)
is defined by (5.5). Applying this fact, we derive an irreducible generating set for
vector-valued anisotropic functions of the variable W ∈ Skw, denoted by V 1

m(W )
henceforth, as follows:

V ρm(Wn),n× ρm(Wn), (ρm(Wn) ·Wn)n, [n,Wn,ρm(Wn)]n,
R (r · n)(ρm(Wn) ·Wn), (r · n)[n,Wn,ρm(Wn)].

The above result may readily be verified by means of the fact (cf. Case 1)

ρm(Wn) = [n,Wn,ρm(Wn)] = 0⇐⇒ ρm(Wn) = 0⇐⇒Wn = 0.

Case 3. ∀r ∈ X : r × n = 0&∃A ∈ X : g(X) ∩ S4m(n) = g(A) ∩ S4m(n).
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Every scalar-valued (resp. second-order tensor-valued) anisotropic function of A
under S4m(n) is equivalent to a scalar-valued (resp. second-order tensor-valued)
anisotropic function of A under C4mh(n). Irreducible representations for the lat-
ter can be obtained merely replacing m with 2m in the table for Case 3 of § 4 a. In
the following, we only need to consider the vector-valued function.

Representations for vector-valued anisotropic functions of the skewsymmetric ten-
sor variable A under S4m(n) can be derived from those for isotropic functions of the
extended variables

(A,ρm(Ån), µm(Å)n, νm(Å)n,N)
(see Xiao 1995a, 1996a), where ρm(Ån) is defined by (5.5) and moreover,

µm(Å) =
2m∑
r=1

(−1)r(lr · Ålr)m, νm(Å) =
2m∑
r=1

(−1)r(l′r · Ål′r)m, (5.12)

where lr and l′r, r = 1, 2, . . . , 2m, are given in (4.3) with m replaced by 2m therein.
Applying this fact, we derive an irreducible generating set for vector-valued aniso-
tropic functions of the variable A ∈ Sym, denoted by V 1

m(A) henceforth, as follows.
V ρm(Ån) + µm(Å)n,n× ρm(Ån) + νm(Å)n, (ρm(Ån) · Ån)n,

[n, Ån,ρm(Ån)]n,
R (r · n)µm(Å), (r · n)νm(Å), (r · n)(ρm(Ån) · Ån), (r · n)[n, Ån,ρm(Ån)].
In fact, by using (1.2) and the fact (cf. Case 1)

ρm(Ån) = [n, Ån,ρm(Ån)] = 0⇐⇒ ρm(Ån) = 0⇐⇒ Ån = 0,
as well as (5.3)3, we infer that the criterion (1.1) can be satisfied when n×An 6= 0,
and that each of the presented generators is irreducible. On the other hand, let
n ×An = 0. Then by using (1.2) and (5.3), we deduce that the criterion (1.1) can
also be satisfied when n×An = 0.

Finally, combining the above three cases, we arrive at the main result of this section
as follows.

Theorem 5.1. The four sets given by
I1
m(u); I0

2m(W ); I0
2m(A);

u · v, [n, ů, v̊], (v · n)(u · ρm(ů)), (v · n)[n, ů,ρm(ů)];
ρm(ů) ·Wn, [n,Wn,ρm(ů)], (u · n)(ρm(Wn) ·Wn), (u · n)[n,Wn,ρm(Wn)];
ů ·Aů, [n, ů,Aů], trφm(ů)A, trφm(ů)AN , (u · n)µm(Å), (u · n)νm(Å),
(u · n)(ρm(Ån) · Ån), (u · n)[n, Ån,ρm(Ån)];n ·WHn, [n,Wn,Hn];
n ·WAn, [n,Wn,An],n ·WAWn, [n,Wn,AWn];
trAB, trABN ,n · ÅBÅn, [n, Ån,BÅn];

and
V 1
m(u);V 1

m(W );V 1
m(A);

and Skw1
m(u); Skw0(W ); Skw0

2m(A);
and Sym1

m(u); Sym0
2m(W ); Sym0

2m(A);
where u,v = u1, . . . ,ua; W ,H = W1, . . . ,Wb; A,B = A1, . . . ,Ac; u 6= v, W 6=
H, provide irreducible representations for scalar-, vector-, skewsymmetric and sym-
metric tensor-valued anisotropic functions of the variables X ∈ D under the group
S4m(n) for each integer m > 1, respectively.
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6. The classes C2m+1h

The classes C2m+1h include the hexagonal crystal class C3h as the particular case
when m = 1.

Applying (6.1) and (6.11) given later, we infer that for any given u ∈ V and
W ∈ Skw,

g(u,W ) ∩ C2m+1h(n) = g(x) ∩ C2m+1h(n),x ∈ {u,W }.
This indicates that the set of two variables, (u,W ), can be reduced to a single
vector variable or a single skewsymmetric tensor variable. Hence in fulfilling the
scheme designed in § 2, it suffices to treat the cases for a single variable and two
variables: u, W , A, (u,v) and (u,A).

Case 1. ∃u ∈ X : g(X) ∩ C2m+1h(n) = g(u) ∩ C2m+1h(n).

By means of the criterion (1.1) and (1.2)–(1.4), as well as the facts

g(u) ∩ C2m+1h(n) =


C2m+1h(n), u = 0,
C2m+1(n), u = an 6= 0,
C1h(n), u · n = 0, u 6= 0,
C1, (u · n)u× n 6= 0,

(6.1)

we infer that the three generating sets V 0(u), Skw0(u) and Sym0
2m+1(u) given in the

table for Case 1 of § 4 a, are also generating sets for vector-valued and skewsymmetric
and symmetric tensor-valued anisotropic functions of the vector variable u under
C2m+1h(n), respectively. In the following, we show that the set below is an irreducible
functional basis of the vector variable u under C2m+1h(n).

I2
m(u) = {(u · n), γm(ů), γ′m(ů)}, (6.2)

where

γm(ů) =
2m+1∑
s=1

(ů · as)2m+1, as = R2sπ/2m+1
n e,

γ′m(ů) =
2m+1∑
s=1

(ů · a′s)2m+1, a′s = R(4s+1)π/4m+2
n e,


(6.3)

where e is a unit vector in the n-plane. Applying the related trigonometric identity,
we derive

γm(ů) = |ů|2m+1
2m+1∑
s=1

cos2m+1
(

2sπ
2m+ 1

− θ
)

= fm|ů|2m+1 cos(2m+ 1)θ, (6.4)

γ′m(ů) = |ů|2m+1
2m+1∑
s=1

cos2m+1
(

2sπ
2m+ 1

+
π

4m+ 2
− θ
)

= fm|ů|2m+1 sin(2m+ 1)θ, (6.5)
where θ is the angle between ů and e and fm is a non-vanishing constant depending
on m. With the help of the above expressions, for ū,u ∈ V we deduce

I2
m(ū) = I2

m(u) =⇒


ū · n = δu · n, |˚̄u| = |ů|,
cos(2m+ 1)θ̄ = cos(2m+ 1)θ,
sin(2m+ 1)θ̄ = sin(2m+ 1)θ,
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=⇒
ū · n = δu · n, |˚̄u| = |ů|,
θ̄ = θ +

2kπ
2m+ 1

, k + 0,±1,±2, . . .

=⇒ ∃Q ∈ C2m+1h(n) : ū = Qu,

where δ2 = 1 and Q ∈ C2m+1h(n) depends on δ, given by

Q =

{
R

2kπ/2m+1
n , δ = 1,
−Rπ

nR
2kπ/2m+1
n , δ = −1.

Thus, we infer that the set I2
m(u) obeys (1.5), and hence that it is a functional basis

of u under C2m+1h(n). It may easily be verified that this basis is irreducible by the
related method used before.

From the above, we conclude that for the case at issue, the desired results can
be obtained from the table for Case 1 in § 4 a by taking δ1m = 0 and replacing the
invariants αm(ů) and α′m(ů) with the invariants γm(ů) and γ′m(ů).

Case 2. ∃x ∈ X : g(X) ∩ C2m+1h(n) = g(x) ∩ C2m+1h(n), where x ∈ Skw or
x ∈ Sym.

Since a scalar-valued (resp. second-order tensor-valued) anisotropic function of
a second-order tensor variable x under C2m+1h(n) is equivalent to a scalar-valued
(resp. second-order tensor-valued) anisotropic function of x under C4m+2h(n), we
know that irreducible functional bases or generating sets for scalar-valued and skew-
symmetric and symmetric tensor-valued anisotropic functions of the variable x =
W ∈ Skw or x = A ∈ Sym under C2m+1h(n) are provided by the corresponding
ones given in the tables for Case 2 or Case 3 in § 4 a, with the replacement of m by
2m+ 1.

Hence, in what follows, it suffices to treat the vector-valued functions of W or
A and the related invariants. According to Xiao (1995a, 1996a), generating sets for
vector-valued anisotropic functions of the variable W or A under C2m+1h(n) are
obtainable from those for vector-valued isotropic functions of the extended variables

(W , ξm(Wn),N) or (A, ξm(Ån),ηm(Å),N),

where

ξm(x) =
2m+1∑
s=1

(x · as)2mas, x ∈ {Wn, Ån}, (6.6)

ηm(Å) =
2m+1∑
s=1

(as · Åas)mas. (6.7)

In the above, the vectors as, s = 1, 2, . . . , 2m+ 1, have been given in (6.3)1.
Taking the above facts into account, we construct the following two tables:

V ξm(Wn),n× ξm(Wn), γm(Wn)n, γ′m(Wn)n,

R r · ξm(Wn), [n, r, ξm(Wn)], (r · n)γm(Wn), (r · n)γ′m(Wn),

V ξm(Ån),n× ξm(Ån),ηm(Å) + γm(Å)n,n× ηm(Å) + γ′m(Ån)n,

R r · ξm(Ån), [n, r, ξm(Ån)], (r · n)γm(Ån), (r · n)γ′m(Ån).
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We would point out that in deriving the last two invariants in the second table,
the terms

r · ηm(Å) and [n, r,ηm(Å)]

have been removed, whereas these terms should appear when forming the inner
product between the generic vector variable r ∈ X and the last two vector generators
in the second table above. The explanation is as follows. Since the case when (r ·
n)r ×n 6= 0 has been covered by Case 1, we only need to consider (r ·n)r ×n = 0
for each r ∈ X. The foregoing fact is evident for the case when r × n = 0. Now let
r ·n = 0 and r 6= 0. If Ån 6= 0, then ξm(Ån) and n×ξm(Ån) are two independent
vectors in the n-plane. From this we know that the aforementioned two terms can
be determined by the first two invariants in the second table and therefore can be
removed. If Ån = 0, then we have (cf. (6.1)3 and (6.12)1,2 below)

g(X) ∩ C2m+1h(n) = g(A) ∩ C2m+1h(n) ⊂ C1h(n)
= g(r) ∩ C2m+1h(n) ⊂ g(X) ∩ C2m+1h(n),

i.e. g(X) ∩C2m+1h(n) = g(r) ∩C2m+1h(n), which has also been covered by Case 1.
In what follows we proceed to prove that the above two sets of vector generators

given in the foregoing two tables, denoted by I2
m(W ) and I2

m(A) henceforth, obey
the criterion (1.1). First, we prove the following fact:

ξm(z̊) = 0⇐⇒ z̊ = 0,
ηm(Å) = 0⇐⇒ q(A) = 0,

}
(6.8)

for z ∈ V and A ∈ Sym. In the second expression above, the vector q(A) is defined
by (4.10)2. In fact, using (4.11) and the relevant trigonometric identity, we derive

ηm(Å) · l = |q(A)|m
2m+1∑
s=1

cosm
(

4sπ
2m+ 1

− θ
)

cos
(

2sπ
2m+ 1

− φ
)

= cm|q(A)|m cos(mθ + φ),

where cm is a non-vanishing constant merely depending on m; l is any unit vector
in the n-plane, and θ and φ are the angles between q(A) and e and between l and
e, respectively. Moreover, replacing Å with z ⊗ z in the above, we gain

ξm(z) · l = dm|z|2m cos(2mθ0 + φ), (6.9)

where θ0 is the angle between z and e. In the above, we mention that 2|q(z ⊗ z)| =
|z|2 and the angle between q(z ⊗ z) and e is given by 2θ0. Since for the vector r,
r̊ = 0 is equivalent to r̊ · e1 = r̊ · e2 = 0, by taking l = e1,e2, i.e. φ = 0, π/2, in the
last two expressions above we infer that (6.8) is true. Here e1 = e and e2 are two
orthonormal vectors in the n-plane.

Then, applying (6.4)–(6.5) and (6.8)–(6.9), we deduce

γm(Wn) = γ′m(Wn) = 0⇐⇒ ξm(Wn) = 0⇐⇒Wn = 0;

γm(Ån) = γ′m(Ån) = 0⇐⇒ ξm(Ån) = 0⇐⇒ Ån = 0.

Thus, from the above facts and (6.8)2 and

g(W ) ∩ C2m+1h(n) =

{
C2m+1h(n), Wn = 0,
C1, Wn 6= 0,

(6.10)
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g(A) ∩ C2m+1h(n) =


C2m+1h(n), A = xI + yn⊗ n,
C1h(n), Ån = 0, q(A) 6= 0,
C1, Ån 6= 0,

(6.11)

as well as (1.2), we conclude that V 2
m(W ) and V 2

m(A) obey the criterion (1.1) sepa-
rately.

Furthermore, let Wi = n ∧ ei,Ai = n ∨ ei, i = 1, 2. Then

γ′m(W1n) = 0, γm(W2n) = 0, γ′m(Å1n) = 0, γm(Å2n) = 0,

with g(x) ∩ C2m+1h(n) = C1 for x = W1,W2,A1,A2. Thus, we infer that both
V 2
m(W ) and V 2

m(A) are irreducible.

Case 3. ∃u,v ∈ X : g(X) ∩ C2m+1h(n) = g(u,v) ∩ C2m+1h(n) 6= g(x) ∩
C2m+1h(n), x = u,v.

From (6.1) and the above conditions we derive that (4.16) holds. It can easily be
verified that the three irreducible generating sets given in the table for Case 4 in § 4 a
are also irreducible generating sets for vector-valued, skewsymmetric and symmetric
tensor-valued anisotropic functions of the two vector variables (u,v) specified by
(4.16) under the group C2m+1h(n). Thus, the desired result for the case at issue can
be obtained from the table for Case 4 in § 4 a with δ1m = 0 and with the functional
basis placed in the angle brackets by the following functional basis of (u,v) under
C2m+1h(n) (here the first case of (4.16) is considered):

{(v · n)2, γm(ů), γ′m(ů)}.

Case 4. ∃(u,A) ∈ X : g(X) ∩ C2m+1h(n) = g(u,A) ∩ C2m+1h(h) 6= g(x) ∩
C2m+1h(n),x = u,A.

From (6.1) and (6.12) and the above conditions we derive

u× n = 0, u 6= 0, Ån = 0, Å 6= O,

i.e.

u = an, a 6= 0,

A = x(e1 ⊗ e1 − e2 ⊗ e2) + ye1 ∨ e2 + cI + dn⊗ n, x2 + y2 6= 0.

}
(6.12)

It may readily be verified that for the variables (u,A) specified above, the union
{(u·n)2}∪I2

m(A) supplies an irreducible functional basis of (u,A) under C2m+1h(n).
On the other hand, for the variables (u,A) at issue, generating sets for vector-
valued and second-order tensor-valued anisotropic functions of the variables (u,A)
under C2m+1h(n) can be derived from vector-valued and second-order tensor-valued
isotropic functions of the extended variables

(u,A,ηm(Å),N)

(see Xiao 1995a, 1996a). Thus, we construct the following table for irreducible gen-
erating sets and the related invariants:

V (u · n)n,ηm(Å),n× ηm(Å),
Skw N , (u · n)n ∧ ηm(Å), (u · n)n ∧ (n× ηm(Å)),
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Sym I,n⊗ n,A,AN −NA, (u · n)n ∨ ηm(Å), (u · n)n ∨ (n× ηm(Å)),
R (u · n)(r · n); trHN ; trC,n ·Cn, trAC, trACN

〈(u · n)2, I2
m(A)〉.

The proof for the above result is easy. In the above table, we regard the generic
variables r ∈ V , H ∈ Skw and C ∈ Sym as being subjected to the conditions
r × n = Hn = C̊n = 0, for the other cases have been covered before. As a result,
when forming the inner product between each presented generator and each of these
variables, only those listed in the above table are non-vanishing.

Finally, combining the above cases, we arrive at the main result of this section as
follows.

Theorem 6.1. The four sets given by
I2
m(u); I0

2m+1(W ); I0
2m+1(A);

u · ξm(Wn), [n,u, ξm(Wn)], (u · n)γm(Wn), (u · n)γ′m(Wn);

u · ξm(Ån), [n,u, ξm(Ån)], (u · n)γm(Ån), (u · n)γ′m(Ån);
(u · n)(v · n), ů · v̊, [n, ů, v̊]; (u · n)ů ·Wn, (u · n)[n,Wn, ů];
(u · n)ů ·An, (u · n)[n,An, ů], ů ·Aů, [n, ů,Aů];
n ·WHn, [n,Wn,Hn];n ·WAn, [n,Wn,An],n ·WAWn, [n,Wn,AWn];
trAB, trABN ,n · ÅBÅn, [n, Ån,BÅn];
u ·Wv, [n,u,Wv] + [n,v,Wu];u ·Av, [n,u,Av] + [n,v,Au];

and
V 0(u);V 2

m(W );V 2
m(A);

and
Skw0(u); Skw0(W ); Skw0(A);

u ∧ v, (u× n) ∧ v + (v × n) ∧ u; (u · n)ηm(Å), (u · n)n ∧ (n× ηm(Å));
and

Sym0
2m+1(u); Sym0

2m+1(W ); Sym0
2m+1(A);

u ∨ v, (u× n) ∨ v + (v × n) ∨ u; (u · n)ηm(Å), (u · n)n ∨ (n× ηm(Å));
where u,v = u1, . . . ,ua; W ,H = W1, . . . ,Wb; A,B = A1, . . . ,Ac; u 6= v, W 6=
H, provide irreducible representations for scalar-, vector-, skewsymmetric and sym-
metric tensor-valued anisotropic functions of the variables X ∈ D under the group
C2m+1h(n) for each integer m > 1, respectively.

7. The classes S4m+2 and C2m+1

The classes at issue include the trigonal crystal classes S6 and C3 in the particular
cases when m = 1.

(a) The classes S4m+2

Applying the facts

g(r) ∩ S4m+2(n) =


S4m+2(n), r = 0,
C2m+1(n), r = an 6= 0,
C1, r × n 6= 0,

(7.1)

Phil. Trans. R. Soc. Lond. A (1998)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


3116 H. Xiao

for any vector r ∈ V , we infer

g(u,v) ∩ S4m+2(n) = g(z) ∩ S4m+2(n),z ∈ {u,v}
for any two vectors u,v ∈ V . Thus, it suffices to treat the cases for a single variable
and two variables: u, W , A, (u,W ) and (u,A).

Case 1. ∃u ∈ X : g(X) ∩ S4m+2(n) = g(u) ∩ S4m+2(n).

A scalar-valued (resp. second-order tensor-valued) anisotropic function of the vec-
tor variable u under S4m+2(n) is equivalent to a scalar-valued (resp. second-order
tensor-valued) anisotropic function of the symmetric tensor variable u ⊗ u under
S4m+2(n). As a result, generating sets for the former can be derived by setting
A = u⊗ u in the corresponding generating sets listed in the table for Case 3 given
later. Moreover, generating sets for vector-valued anisotropic functions of u under
S4m+2(n) can be obtained from those for vector-valued isotropic functions of the
extended variables (u,Eξm(ů),N), where ξm(ů) is given by (6.6)1 with x = ů.
Applying these facts, we construct the following table:

V u, ů× n, γm(ů)n, γ′m(ů)n,
Skw N ,n ∧ ξm(ů),n ∧ (n× ξm(ů)),
Sym I,n⊗ n, ů⊗ ů, ů ∨ (n× ů),n ∨ ξm(ů),n ∨ (n× ξm(ů)),

R u · r, [n, ů, r̊], (r · n)γm(ů), (r · n)γ′m(ů);
trHN ,n ·Hξm(ů), [n,Hn, ξm(ů)]
trC,n ·Cn, ů ·Ců, [n, ů,Ců],n ·Cξm(ů), [n,Cn, ξm(ů)]

〈(u · n)2, (u · n)γm(ů), (u · n)γ′m(ů), α2m+1(ů), α′2m+1(ů)〉.
With the aid of (7.1) and (6.11) with C2m+1h(n) replaced by S4m+2(n), as well as

(1.2)–(1.4), it can be proved that the first three sets in the above table, denoted by
V 3
m(u), Skw3

m(u) and Sym3
m(u) henceforth, are irreducible generating sets required.

Moreover, the functional basis I3
m(u), given in the angle brackets, is derived by

setting A = u⊗ u in the functional basis of A ∈ Sym given in the table for Case 3
below, as stated before.

Case 2. ∃W ∈ X : g(X) ∩ S4m+2(n) = g(W ) ∩ S4m+2(n).

Every vector-valued anisotropic function of W vanishes. Anisotropic functional
bases of the variable W ∈ Skw under S4m+2(n) can be obtained from isotropic
functional bases of the extended variables (W ,n ∧ ξm(Wn),N) (see Xiao 1995a,
1996a). Moreover, it can be shown that the sets Skw0(W ) and Sym0

2m+1(W ) (see
Case 2 in § 4 a) provide irreducible generating sets for skewsymmetric and symmetric
tensor-valued anisotropic functions of the variable W under S4m+2(n). Thus, here
we only need to supply an irreducible functional basis of W under S4m+2(n). Other
relevant invariants can be found in the table for Case 2 in § 4 a.

I3
m(W ) = {trWN , γm(Wn), γ′m(Wn)}. (7.2)

By means of the identity (4.6) and the procedure used at Case 1 in § 6 a, it can be
proved that the above set is indeed a desired irreducible functional basis.

Case 3. ∀H ∈ X : Hn = 0&∃A ∈ X : g(X) ∩ S4m+2(n) = g(A) ∩ S4m+2(n).
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Every vector-valued anisotropic function of W vanishes. Irreducible representa-
tions for scalar-valued and second-order tensor-valued anisotropic functions of the
variable A ∈ Sym under S4m+2(n) are obtainable from those for scalar-valued and
second-order tensor-valued isotropic functions of the extended variables

(A,Eξm(Ån),Eηm(Å),N)

(see Xiao 1995a, 1996a), where ξm(Ån) and ηm(Å) are given by (6.6)–(6.7). Taking
these facts into account, we construct the following table:

Skw N ,n ∧ Ån,n ∧ (n× Ån),n ∧ ηm(Å),n ∧ (n× ηm(Å)),
Sym I,n⊗ n,A,AN −NA,n ∨ Ån,n ∨ (n× Ån),

n ∨ ηm(Å),n ∨ (n× ηm(Å)),
R trHN ; trC,n ·Cn, trAC, trACN ,

(Ån) · (C̊n), [n, Ån, C̊n],n ·Cηm(Å), [n, C̊n,ηm(Å)]

〈trA, trA3,n · n, [n,An,A2n], γm(Ån), γ′m(Ån), β2m+1(Å), β′2m+1(Å)〉.
By means of the criterion (1.1) and (1.3)–(1.4), as well as

g(A) ∩ S4m+2(n) =

{
S4m+2(n), Å = O,

C1, Å 6= O,

it can be proved that the first two sets of generators in the above table, denoted by
Skw3

m(A) and Sym3
m(A) henceforth, are generating sets for skewsymmetric and sym-

metric tensor-valued anisotropic functions of the variable A ∈ Sym under S4m+2(n),
and that the two generating sets are irreducible. In what follows, we show that the
set placed in the angle brackets, denoted by I3

m(A) henceforth, is an irreducible
functional basis of A under S4m+2(n).

In fact, by following the same procedure as that used for deriving the similar result
at Case 3 in § 4 a, we infer the following fact holds: for Ā,A ∈ Sym,

I3
m(Ā) = I3

m(A) =⇒ I∞(Ā) = I∞(A) =⇒ ∃Q = Rψ
n ∈ C∞h(n) : Ā = QAQT.

Suppose Ån 6= 0. Then, using the same procedure as that used at Case 1 in § 6, we
derive

θ̄ =
2kπ

2m+ 1
+ θ, k = 0,±1,±2, . . . ,

where θ̄ and θ are the angles between ˚̄An and e and between Ån and e, respectively.
From the equality

˚̄An = Rψ
nÅR

−ψ
n n = Rψ

n(Ån),

we get θ̄ = θ + ψ. Thus, ψ = 2kπ/(2m+ 1), i.e.

I3
m(Ā) = I3

m(A) =⇒ ∃Q ∈ S4m+2(n) : Ā = QAQT. (7.3)

Suppose Ån = 0. Then for any scalar-valued function f(A) we have

f(QAQT) = f(A),Q = Rπ
n.

The above fact implies that for the variable A with Ån = 0, each invariant of
the variable A under the group S4m+2(n) turns out to be an invariant of A under
the larger group C4m+2h(n) (⊃ S4m+2(n)). Consequently, for the variable A with
Ån = 0, a functional basis of A under S4m+2(n) may be provided by I0

2m+1(A) (see
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the table for Case 3 in § 4 a). Here the two invariants α2m+1(Ån) and α′2m+1(Ån)
vanish and hence only the two invariants β2m+1(Å) and β2m+1(Å) are retained. From
the above, we conclude that I3

m(A) is a functional basis of the variable A ∈ Sym
under S4m+2(n). Moreover, again from the eight pairs X = A and X ′ = A′ given
at the end of Case 3 in § 4 a, where m is replaced by 2m+ 1, one can infer that the
basis I3

m(A) is irreducible.

Case 4. ∃(u,W ) ⊂ X : g(X) ∩ S4m+2(n) = g(u,W ) ∩ S4m+2(n) 6= g(x) ∩
S4m+2(n),x = u,W .

From (7.1) and the above conditions we derive

u = an 6= 0,
Wn 6= 0, i.e. g(W ) ∩ S4m+2(n) = S2.

}
(7.4)

As a result, the sets Skw0(W ) and Sym0
2m+1(W ) supply desired irreducible generat-

ing sets. Moreover, it is evident that the union I3
m(W ) ∪ {(u · n)2} provides an irre-

ducible functional basis of the variables (u,W ) specified by (7.4) under S4m+2(n).
Thus, here we need only to provide an irreducible generating set for vector-valued
functions of the variables (u,W ) with (7.4) under S4m+2(n), which is as follows.

V 3
m(W ) = {u, (u · n)ηm(Wn), (u · n)ηm(Wn)}. (7.5)

Case 5. ∃(u,A) ⊂ X : g(X) ∩ S4m+2(n) = g(u,A) ∩ S4m+2(n) 6= g(x) ∩
S4m+2(n),x = u,A.

From (7.1) and the above conditions we derive

u = an 6= 0,
Ån 6= 0, i.e. g(A) ∩ S4m+2(n) = S2.

}
(7.6)

As a result, the sets Skw0(A) and Sym0
2m+1(A) supply desired irreducible generating

sets. Moreover, it is evident that the union I3
m(A)∪{(u ·n)2} provides an irreducible

functional basis of the variables (u,A) specified by (7.6) under S4m+2(n). Thus, here
we need only to provide an irreducible generating set for vector-valued functions of
the variables (u,A) with (7.6) under S4m+2(n), which is as follows.

V 3
m(A) = {u, (u · n)Ån, (u · n)n× Ån, (u · n)ηm(Å), (u · n)n× ηm(Å)}. (7.7)

Finally, combining the above cases, we arrive at the main result of this subsection
as follows.

Theorem 7.1. The four sets given by

I3
m(u); I3

m(W ); I3
m(A);u · v, [n, ů, v̊], (u · n)γm(v̊), (u · n)γ′m(v̊);

n ·WHn, [n,Wn,Hn];n ·WAn, [n,Wn,An],n ·WAWn, [n,Wn,AWn];
trAB, trABN , (Ån) · (B̊n), [n, Ån, B̊n], (Ån) · ηm(B̊), [n, Ån),ηm(B̊)];
n ·Wξm(ů), [n,Wn, ξm(ů)]; ů ·Aů, [n, ů,Aů], (Ån) · ξm(ů), [n, Ån, ξm(ů)];

and
V 3
m(u);V 3

m(u,W );V 3
m(u,A);

and
Skw3

m(u); Skw0(W ); Skw3
m(A);
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and
Sym3

m(u); Sym0
2m+1(W ); Sym3

m(A);

where u,v = u1, . . . ,ua; W ,H = W1, . . . ,Wb; A,B = A1, . . . ,Ac; u 6= v, W 6=
H, provide irreducible representations for scalar-, vector-, skewsymmetric and sym-
metric tensor-valued anisotropic functions of the variables X ∈ D under the group
S4m+2(n) for each integer m > 1, respectively.

(b) The classes C2m+1

Applying the arguments given at the start of § 4 b and theorem 7.1, we derive the
following result.

Theorem 7.2. The four sets given by

u · n, γm(ů), γ′m(ů); I3
m(W ); I3

m(A);u · v, [n,u,v],n ·WHn, [n,Wn,Hn];
n ·WAn, [n,Wn,An],n ·WAWn, [n,Wn,AWn];
trAB, trABN , (Ån) · (B̊n), [n, Ån, B̊n], (Ån) · ηm(B̊), [n, Ån,ηm(B̊)];
u ·Wn, [n,u,Wn];u ·An, [n,u,An], ů ·Aů, [n,u,Au];

and
n, ů,n× ů,Wn,n×Wn, Ån,n× Ån,ηm(Å),n× ηm(Å);

and
Skw0(W ); Skw3

m(A),n ∧ ů,n ∧ (n× ů);

and
Sym0

2m+1(W ); Sym3
m(A), ů⊗ ů, ů ∨ (n× ů),n ∨ ů,n ∨ (n× ů);

where u,v = u1, . . . ,ua; W ,H = W1, . . . ,Wb; A,B = A1, . . . ,Ac; u 6= v, W 6=
H, provide irreducible representations for scalar-, vector-, skewsymmetric and sym-
metric tensor-valued anisotropic functions of the variables X ∈ D under the group
C2m+1(n) for each integer m > 1, respectively.

8. Concluding remarks

In the previous sections, complete non-polynomial representations for scalar-, vector-,
skewsymmetric and symmetric tensor-valued anisotropic functions of any finite num-
ber of vectors and second-order tensors under all kinds of finite subgroups of the
transverse isotropy group C∞h are derived, each of which is composed of polyno-
mial invariants or polynomial generators. The results presented supply unified forms
of general representations for all subgroup classes concerned respectively. Of them,
the results for generating sets are proved to be irreducible. Moreover, it is shown
that each presented invariant with a single variable u or W or A is irreducible.
Irreducibility of each presented invariant with two or three variables will be proved
elsewhere.

Comparing the existing results for polynomial representations in some related par-
ticular cases (see, for example, Smith & Rivlin 1964; Smith & Kiral 1969; Kiral &
Smith 1974) with the corresponding results presented here, one can see that non-
polynomial representations are in general more compact than polynomial represen-
tations, as has been noticed before by Wang (1970) and Boehler (1979, 1987).
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In Xiao (1996d), irreducible functional bases of a single symmetric tensor under
the 32 crystal classes are derived, which are shown to be more compact than the
well-known results for minimal integrity bases (see Smith & Rivlin 1958; see also
Green & Adkins 1960; Truesdell & Noll 1965; Spencer 1971; Smith 1994). Here, even
more compact results for the crystal classes S6, C4h and C6h are obtained. In fact,
each of the presented irreducible functional bases I3

m(A) for m = 1 and I0
m(A) for

m = 2, 3 for the three crystal classes just mentioned, is composed of eight invariants
only, whereas the corresponding bases given in Xiao (1996c) are formed by 11, 10 and
9 invariants respectively. Furthermore, each of the former provides a unified form of
functional bases for all crystal and quasi-crystal classes concerned, and they always
include eight invariants only. Inspired by these results, irreducible functional bases of
a single symmetric tensor under all kinds of orthogonal subgroups have been derived
in Xiao (1998a), each of which is of unified form for all infinitely many crystal and
quasi-crystal classes concerned and consists merely of not more than eight invariants,
except for the cubic crystal class Th and the icosahedral quasi-crystal class Ih.

Some invariants and generators in the results presented are expressed in terms
of summations with respect to sets of unit vectors each of which constitutes an
equipartition of the unit circle in the n-plane. In a recent article (Xiao 1998b), new
forms of these results and a simplified derivation and proofs for them are available
in terms of some trigonometric functions associated with Tschebysheff polynomials
of the first and second kinds.

This research was completed during the author’s visit to Institute of Mechanics I, Ruhr-Univer-
sity Bochum under financial support from the Alexander von Humboldt Foundation and Deuts-
che Forschungsgemeinshaft (DFG). This support and that from National Natural Science Foun-
dation of China are greatly appreciated. In particular, the author would like to express his
hearty gratitude to Professor Dr Otto Bruhns and Dr Albert Meyers for their hospitality and
kind help.
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